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Polarization dynamics of Bragg solitons
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The families of vectorial Bragg solitons existing in transversely periodic media and their stability properties
are studied in detail. Two qualitatively distinct types of polarization instabilities have been found. One leads to
the significant radiation transfer into nonsolitonic forms, while the other mainly redistributes energy between
two soliton components.
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I. INTRODUCTION

It is known that so-called gap or Bragg solitons can ex
in nonlinear media with one-dimensional~1D! periodic
modulation of the refractive index, see, e.g., Refs.@1,2#. The
physics behind them differs significantly from the nonline
Schrödinger ~NLS! solitons. Bright NLS solitons in self-
focusing media can be interpreted as due to the phenom
of the nonlinearity-induced total internal reflection of lig
from the periphery of the soliton itself. In the case of pe
odic media the reflection of light from the periphery towar
the soliton center is due to the Bragg effect, which create
forbidden gap between the ‘‘conduction’’ and the ‘‘valenc
bands in the periodic structure, which is often referred as
photonic crystal@3#. Bragg solitons exist at frequencies th
lie in the gap, but where a nonlinear change of refract
index shifts its boundaries. This shift can be positive or ne
tive, since it does not matter whether the gap is shifted ab
or below the soliton frequency, so long as the latter is ou
the forbidden gap for propagation.

The present paper deals with the properties of vec
Bragg solitons in an anisotropic one-dimensional perio
structure. We consider spatial solitons, i.e., a quasi-o
dimensional beam propagating in a planar waveguide w
periodic modulation of the refractive index transverse to
propagation axis. This geometry is interesting in allowi
bright spatial solitons in media with either focusing or de
cusing nonlinearity, so that spatial self-trapping can be
served over a wide frequency range. In contrast to the fa
iar case of temporal Bragg solitons in the optical fibe
Bragg solitons self-trapped in the direction transverse to
direction of propagation have not been investigated so fa

The paper is organized as following. In the following se
tion, we describe the system and introduce model equati
In Sec.III, we introduce families of the scalar and vector
Bragg solitons. In the Sec. IV, we study their stability a
make comparison with results known for vector NLS@4–7#
and scalar Bragg solitons@8–10#.

II. MODEL EQUATIONS

Starting from the full set of Maxwell equations describin
propagation of electromagnetic waves in an anisotropic
1063-651X/2002/66~4!/046603~8!/$20.00 66 0466
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nar waveguide with refractive index weakly modulat
across the propagation direction~see Fig. 1!, we have de-
rived the following reduced system of coupled propagat
equations:

i ]zEr ,l1]xxEr ,l1@d/21 f ~x!#Er ,l1@auEr ,l u2

1~a12b!uEl ,r u2#Er ,l2dEl ,r /250. ~1!

HereEr andEl are envelopes~slowly varying alongz) of the
right and left circular polarization components of the elect
field

EW 5~Ex ,Ey!T5
1

A2
@Er1El ,i ~Er2El !#

T. ~2!

Apart from the functionf (x) ~see below!, these equations ar
similar to the well-known model describing the transver
effects in planar waveguides, see e.g. Refs.@4–6,11#. d
5(ey2ex)/ex accounts for linear birefringence of the cry
tal, whereex,y are space-independent components of the
ear dielectric susceptibility tensor taken in the normal co
dinates. The nonlinear part of the displacement vec

FIG. 1. j
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YULIN, SKRYABIN, AND FIRTH PHYSICAL REVIEW E 66, 046603 ~2002!
entering Maxwell equations was taken in the formDW

5aexuEW u2EW 1bex(EW EW )EW * @12#. a andb describe self- and
cross-phase modulation, respectively, due to the nonlin
part of the refractive index@12#. If b is not equal toa, the
medium exhibits nonlinear birefringence.f (x) describes a
weak spatially dependent contribution to the linear susce
bility, a linear index modulation that creates a forbidden g
for waves propagating in thex direction. The space coordi
natesx and z are scaled to the wavelength and diffracti
length, respectively.

Assuming that the index modulation is weak enough a
that the soliton width is much greater than modulation
riod, we can represent the soliton field as a superpositio
two waves, which have oppositely directedx components of
their wave vectors. This, in essence, is equivalent to
coupled-mode approach applied in the case of fiber Br
solitons @2,13#. It is convenient to switch to a linear pola
ization basis at this stage, so we further transform Eq.~1!
reducing them to coupled-mode equations through the s
stitution

Ex,y5
1

Am
ei (p2/2L2)z@Ex,y

(1)~x,z!ei (p/L)x

1Ex,y
(2)~x,z!e2 i (p/L)x#. ~3!

Here, Ex,y
(6) are slow functions of x, m

5u(1/L)*0
L f (x)ei (2p/L)xdxu is a coupling coefficient, andL is

the modulation period. Introducing new variablesz̃
5(1/2)mz and x̃5(L/2p)mx and omitting the tilde in the
following, we get the set of four equations

i ]zEx
(6)6 i ]xEx

(6)1Ex
(7)1@~a1b!~ uEx

(6)u212uEx
(7)u2!

1a~ uEy
(6)u21uEy

(7)u2!#Ex
(6)1aEy

(6)Ey
(7)* Ex

(7)

1bEy
(6)2Ex

(6)* 12bEy
(6)Ey

(7)Ex
(7)* 50, ~4!

i ]zEy
(6)6 i ]xEy

(6)1Ey
(7)1dEy

(6)1@~a1b!~ uEy
(6)u2

12uEy
(7)u2!1a~ uEx

(6)u21uEx
(7)u2!#Ey

(6)

1aEx
(6)Ex

(7)* Ey
(7)1bEx

(6)2Ey
(6)*

12bEx
(6)Ex

(7)Ey
(7)* 50. ~5!

Note that the coupled-mode approach applied for tem
ral solitons in fiber Bragg gratings results in an equivalent
of equations. In the fiber case,z should be interpreted a
local time andx as a coordinate along the fiber. Thoug
experimental relevance of the existence of vector gap s
tons in fibers has been outlined in recent work@13#, we are
not aware of any theoretical studies.

III. FAMILIES OF BRAGG SOLITONS

We focus below on the properties of spatial Bragg solito
propagating parallel to thez axis. Practical excitation o
these structures should require use of a strongly diffrac
initial beam profile with suitable wavelength, which can pr
04660
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vide sufficiently strong scattering from the grating. Equiv
lently, one can use two input beams propagating at an a
to z axis, see Fig. 1. The latter scheme is equivalent to
one suggested in Ref.@14# for excitation of parametric Bragg
solitons. From a mathematical point of view, propagation
a spatial soliton is equivalent to the zero velocity solitons
Bragg fibers@14#. Selective modeling of Eqs.~4! and ~5!
indicates that introducing nonzero velocity through the s
stitution (x,z)→(x2vz,z), does not generally lead to dy
namics qualitatively different from those described below

We seek solitary solutions of Eqs.~4! and~5! in the form

Ex,y
(6)5Ax,y

(6)~x,q!eiqz. ~6!

Parametrization byq naturally follows from the single phas
invariance of the Eq.~1!,

~Er ,El !→~Ere
if,Ele

if!, ~7!

wheref is an arbitrary phase. Numerically solving the r
sulting set of ordinary differential equations forAx,y

(6) , we
have been able to identify four soliton families. First, the
are two linearly polarized solitons:~i! Ax

(6)50, Ay
(6)Þ0 and

~ii ! Ax
(6)Þ0, Ay

(6)50. The stationary profiles of the linearl
polarized solitons obviously coincide with those known
closed analytical form for the scalar problem@2#. The two
families of the linearly polarized solitons are straightfo
wardly transformed one into another usingAx

(6)(q,x)
5Ay

(6)(q1d,x). Second, there are two families of ellipt
cally polarized solitons:~iii ! Ax

(6)Þ0, Ay
(6)Þ0 and~iv! the

family obtained from the third by inverting the sign of eith
x- or y-polarized components~which corresponds to the op
posite direction of the rotation of the polarization vector!.

A bifurcation diagram showing dependence of the to
soliton powerP (]zP50),

P5E dx~ uEx
1u21uEx

2u21uEy
1u21uEy

2u2! ~8!

vs d for all the above mentioned Bragg solitons, and cor
sponding examples of the soliton transverse profiles
shown in Figs. 2 and 3.

The necessary conditions for existence of the Bragg s
tons can be found from analysis of the decay of the soli
tails. Linearly polarized solitons can exist ifuqu,1 (x polar-
ization! or uq1du,1 (y polarization!. The power of the
x-polarized soliton is obviouslyd independent, see Fig. 2
The peak intensity of the linearly polarized solitons go
down whenq approaches the lower boundary of the forbi
den gap from above, i.e.,q,(q1d)→21, providing that
nonlinearity is defocusing, i.e.,a1b,0. When the nonlin-
earity has the right sign, a relatively small intensity is enou
to push the effective frequency down into the ‘‘valenc
band. In contrast, ifq,(q1d)→1, i.e., whenq approaches
the upper boundary of the forbidden gap, the peak inten
of the soliton should be very high to produce a nonline
shift of the wave number large enough to bring it into t
‘‘valence’’ band. A focusing nonlinearity pushes the effecti
wave number up towards the ‘‘conduction’’ band, so reve
3-2
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POLARIZATION DYNAMICS OF BRAGG SOLITONS PHYSICAL REVIEW E66, 046603 ~2002!
ing the picture just described. Elliptically polarized solito
exist if max(uqu,uq1du),1, i.e., inside the range of wave num
bers, for which the propagation of linear waves is forbidd
for both polarizations. An elliptical soliton family detache
from the linear one at some critical value ofd5d1 and it
ceases to exist atq1d→1, when the band gap boundary fo
y polarization is achieved, see Fig. 2.

Because of the birefringence, the decay rate of the sol
tails is different forx andy polarizations. For example, ifuqu
is closer to 1 thanuq1du, the polarization ellipse at the

FIG. 2. Dependences of the soliton power on the anisotr
parameterd for linearly and elliptically polarized solitons. Dashe
lines show regions of polarization instability. Parameters areq
50, a522, b521.

FIG. 3. Intensity distributions for they-polarized soliton~a!, I y

5uAy
1u21uAy

2u2, and for the elliptical soliton~b!, I el5uAx
1u2

1uAx
2u21uAy

1u21uAy
2u2, for different values ofd. Parameters as in

Fig. 1.
04660
n
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soliton tail is elongated along thex axis, and alongy axis if
vice versa. In the vicinity of the point where the elliptic
soliton splits from thex-polarized one, i.e., atd5d1, see Fig.
2, the former has a core with nearlyx polarization and tails
with nearlyy polarization, i.e., the polarization state rotat
by approximately 90°, as position varies from the solit
core to its periphery, see Fig. 4.

Note that Eqs.~4! and~5! remain unchanged after subst
tution

~d,a,b,Ex,y
(1) ,Ex,y

(2)!→~2d,2a,2b,Ex,y
(1)* ,2Ex,y

(2)* !.

Therefore, without the loss of generality we can fix the si
of a and b to negative. Then changing sign ofd we will
effectively study both focusing (a,b.0) and defocusing
(a,b,0) nonlinearities. In all subsequent calculations,
fix a522, b521, which corresponds to the defocusin
electronic nonlinearity.

IV. STABILITY ANALYSIS

After establishing the existence of the soliton families
the problem, we now turn our attention to their stabili
analysis.

A. Analytics

Though full stability analysis is possible only by th
means of numerical methods, some results on stability of
x-polarized solitons can be derived analytically. For this p
pose it is easier to use governing equations in the form~1!.
We proceed by linearizing Eq.~1! through the substitution

Er ,l5@Ar ,l~x!1Ur ,l~x,z!1 iWr ,l~x,z!#eiqz, ~9!

where Ar ,l(x) are real functions characterizing transver
profiles of the soliton components in circular basis andUr ,l ,
Wr ,l are small real perturbations. After separation of real a
imaginary parts, in the first perturbation order, we derive
system of linear equations:

y FIG. 4. Polarization state at distanced from the center of the
elliptically polarized soliton for different parameters:~a! q50, d
520.7, ~b! q50.9, d521.46.
3-3
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YULIN, SKRYABIN, AND FIRTH PHYSICAL REVIEW E 66, 046603 ~2002!
~ T̂2dt̂ !UW 52]zWW , ~10!

~P̂2dt̂ !WW 5]zUW ,

whereUW 5(Ur ,Ul)
T, WW 5(Wr ,Wl)

T,

t̂5
1

2S 1 21

21 1 D , ~11!

P̂ are T̂ self-adjoint operators:

P̂5S D̂2aAr
22~a12b!Al

2 0

0 D̂2aAl
22~a12b!Ar

2D ,

~12!

T̂5S D̂23aAr
22~a12b!Al

2 22~a12b!AlAr

22~a12b!AlAr D̂23aAl
22~a12b!Ar

2D ,

~13!

and D̂52]x
21k2 f (x). Assuming exponential evolution o

the perturbations, i.e., UW (x,z)5uW (x)elz1uW * (x)el* z,
WW (x,z)5wW (x)elz1wW * (x)el* z, Eq. ~10! are straightfor-
wardly reduced to a linear eigenvalue problem.

In the special cased50, Eq. ~1! acquire an additiona
symmetry group

~Er ,El !→~Ere
ic,Ele

2 ic!, ~14!

wherec is a second arbitrary phase. Linearly and elliptica
polarized solitons become, in this case, members of a si
soliton family. This is because the second phase invaria
implies existence of a second family parameterD and soli-
tons can be sought in the form

Er5Ar0~x!eiqz1 iDz1 if1 ic, El5Al0~x!eiqz2 iDz1 if2 ic.
~15!

This new parametrization opens up a possibility to deve
an asymptotic theory of polarization instability of linear
polarized solitons for small values ofd. The case of
x-polarized solutionAr5Al5A provides a particularly trans
parent example, because in this case the functionA does not
itself depend ond, see Eq.~1!.

For d50 the infinitesimal symmetry transformations~14!
applied to thex-polarized soliton generates a Goldstone
neutral soliton eigenmodewW 5wW c5(A,2A)T, uW 50 having
zero eigenvalue, i.e.,l50. The zero eigenvalues corre
sponding to the Goldstone modes in Hamiltonian systems
always evenly degenerate, see, e.g., Ref.@15#. In our case
double degeneracy is realized and therefore, when the s
metry ~14! is broken by nonzero values ofd, either two
imaginary or two real eigenvalues with opposite signs app
04660
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in the soliton spectrum, generating instability in the lat
case. To work out conditions for this instability, we transfor
Eq. ~10! to the form

T̂P̂wW 5~2l21dT̂t̂1dT̂t̂1d2t̂2!wW . ~16!

We assume thatulu2;udu and search for solutions of Eq
~16! in the form

wW 5wW c1wW 11O~ udu2!, ~17!

where the components ofwW 1 are of orderudu. Then solvabil-
ity conditions in the first order require orthogonality of th
vector RW 5l2wW c1dT̂t̂wW c to the null space of the operato

adjoint to T̂ P̂, i.e., P̂ T̂. The null space of the latter is
spanned by the two vectorsuW q5]q(A,A)T and uW D

5@]D(Ar0 ,Al0)#D50
T . The verification ofP̂ T̂uW D50 requires

the linearization procedure to be done ford50 in the vicin-
ity of the two-parameter soliton family~15!. This reveals
explicit dependence ofP̂ andT̂ on D, which can, in its turn,
be used to check thatP̂(T̂uW D)52P̂wW c50.

The orthogonality ofRW to uW q is satisfied unconditionally,
while orthogonality to uW D requires l2^wW cuuW D&
1d^T̂t̂wW cuuW D&5l2^wW cuuW D&2d^t̂wW cuwW c&50, which gives

l25

24dE
2`

1`

dxA2

F]DE
2`

1`

dx~Ar0
2 2Al0

2 !G
D50

. ~18!

Despite the fact that integrals in Eq.~18! can be calcu-
lated only numerically, this expression gives a clear indi
tion that a change in sign ofd results in instability of the
soliton. As it can be seen from the structure of the exci
eigenmode, the perturbations growing as a result of the
stability havey polarization because the corresponding le
and right-polarized components are equal in magnitude,
have opposite signs. To verify our analytical results, and f
ther develop our understanding of polarization instabilities
Bragg solitons, we describe below an extensive numer
study of the polarization dynamics of gap solitons.

B. Numerical results

All our numerical results are obtained within the appro
mation of slowly varying amplitudes and therefore from no
on we make full use of Eqs.~4! and ~5!. Their linearization
near the soliton solutionAx

(6)Þ0, Ay
(6)50 leads to two in-

dependent eigenvalue problems for the operatorsL̂x,y , see
the Appendix. Eigenstates ofL̂x determine the evolution o
3-4
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POLARIZATION DYNAMICS OF BRAGG SOLITONS PHYSICAL REVIEW E66, 046603 ~2002!
x-polarized perturbations, which, in the circular basis, ha
identical left and right components. The spectral proper
of L̂x have been studied in detail in several previous pap
@8#, and it has been found that under the certain condition
quadruplet of complex eigenvalues close to the continu
part of the spectrum generates ascalar instability of gap
solitons.

The dynamics ofy-polarized perturbations is governed b
the eigenstates of the operatorL̂y , which is d dependent.
The spectrum ofL̂y has a doubly degenerate zero eigenva
at d50, which in the circular basis corresponds to the n
tral eigenmodewW c . Numerically tracing a deviation of thes
eigenvalues from zero, we have found that instability, i.e
pair of real eigenvalues, appears ford,0, see Fig. 5 and Eq
~18!. Excellent agreement between the numerical and
analytical results for small absolute values ofd can be seen
in Fig. 6. The high-density regions of the spectrum seen

FIG. 5. Spectra ofL̂y for different values ofd: ~a! d520.25,
~b! d520.8, ~c! d520.85. Other parameters as in Fig. 1.

FIG. 6. Comparison of numerical results~circles! for the polar-
ization instability growth rate with the analytical predictions,@Eq.
~18!#, ~solid lines!. Parameters as in Fig. 1.
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Fig. 5 correspond to the continuum, which is divided in tw
parts by the central gap,uq1du21,Iml,12uq1du,
where the stable eigenmodes belonging to the discrete pa
the spectrum can be found, see Fig. 5~b!.

The direct numerical simulation of Eqs.~4! and ~5!, with
initial conditions taken as anx-polarized soliton plus seede
noise of both polarizations, shows an initial growth rate
the y- component within 5% of the value found from th
spectral problem. After the transient regime the instabi
generally leads to the formation of an oscillatory soliton
state, see Fig. 7, which is close to the elliptical soliton. N
that stability analysis of the latter lies outside our pres
scope. Radiation losses have been found minimal during
velopment of the instability, which agrees well with goo
localization of the unstable eigenvector within the region
localization of the soliton itself, see Fig. 8. Thus the pol

FIG. 7. x-z plots showing evolution ofuEx
(1)u21uEx

(2)u2 ~a! and
uEy

(1)u21uEy
(2)u2 ~b!, when Eqs.~4! and ~5! are initialized with an

x-polarized soliton perturbed by noise. The parameters areq50 and
d520.25.

FIG. 8. Components of the eigenvector generating polariza
instability. The corresponding spectrum is shown in Fig. 5~a!.
3-5
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YULIN, SKRYABIN, AND FIRTH PHYSICAL REVIEW E 66, 046603 ~2002!
ization instability found for small negatived can be inter-
preted as parametric excitation of guidedy-polarized waves
in the waveguide formed by thex-polarized soliton, i.e.,
waveguideinstability.

With further increase ofudu the instability growth rate
approaches its maximum, then it starts to decrease in v
and finally the positive and negative eigenvalues fuse at z
for d5d1, see Fig. 9. This appears to be exactly the po
where the elliptic soliton family detaches from th
x-polarized one. For largerudu the eigenvalues, we are trac
ing, quickly move along the imaginary axis, see Fig. 5~b!,
towards the edge of the continuum spectrum. For somd
5d2, as a result of collision with eigenvalues close to t
edge of the continuum spectrum, four complex eigenval
appear in the soliton spectrum, see Fig. 5~c!. Two of these
have positive real parts thereby generating Hamiltoni
Hopf instability of thex-polarized soliton. With further in-
crease ofudu the instability growth rate decreases slowly.
seems that its existence region is not bounded from the
see Fig. 10.

The eigenvectors corresponding to the latter instability
weakly localized relatively to the soliton itself and have o
cillatory tails, see Fig. 11. The direct numerical simulati
reveals that energy flow from thex to the y component is
followed by substantial radiation of energy out of the effe
tive waveguide created by the soliton, see Fig. 12. This co
be expected from the form of the eigenvectors. Thus

FIG. 9. Growth rate of the waveguide-type instability vsd. The
corresponding spectrum is shown in Fig. 5~a!.

FIG. 10. Growth rate of the radiative-type instability vsd. The
corresponding spectrum is shown in Fig. 5~c!.
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type of the polarization instability can be naturally referr
to as theradiative instability. The amount of energy emitte
into nonsolitonic forms decreases with propagation, fina
leading to the formation of a solitonlike structure with ellip
tical polarization state, similarly to what happens as a re
of the waveguide-type instability for small negatived. The
characteristic angle of radiation increases, from being sm

FIG. 11. Components of the eigenvector generating radia
instability. Parameters ared521.2, q50.

FIG. 12.x-z plots showing evolution ofuEx
(1)u21uEx

(2)u2 ~a! and
uEy

(1)u21uEy
(2)u2 ~b!, when Eqs.~4! and ~5! are initialized with an

x-polarized soliton perturbed by noise. Parameters areq50, d5
20.85.
3-6
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POLARIZATION DYNAMICS OF BRAGG SOLITONS PHYSICAL REVIEW E66, 046603 ~2002!
for d close tod2 to being close top/2, whend→2`. A
qualitative explanation for this dependence can be base
the assumption that one of the conditions for the radia
instability should be in synchronism between the soliton a
some plane wave with wave vector lying outside the forb
den band. Taking ay-polarized plane wave in the form
eiqzz1 iqxx, we find a dispersion relation in the form (d
2qz)

22qx
251. Synchronism requiresqz5q, whereq is the

shift of the soliton wave number. This gives an estimate
the characteristic angle of radiation:f, f;
6arctan(A(d2q)221/q). Though this expression qualita
tively reproduces the numerically observed dependence of
on d, one should bear in mind that the dispersive proper
of waves emitted by a soliton are of course different fro
those of plane waves, which limits this and other possi
applications of the synchronism condition.

The polarization instabilities found here can usually co
pete with the scalar instabilities reported in Ref.@8#. An im-
portant observation in this context is that the scalar insta
ity exists only for q.0 @8#, i.e., in the top half of the
forbidden band, while polarization instability can be pres
for any q and is controlled by the sign ofd. The unstable
regions in the (q,d) plane are shown in Fig. 13. If bot
instabilities are present, either can dominate depending
the values of the parameters.

V. SUMMARY

We have studied existence of linearly and elliptically p
larized spatial Bragg solitons propagating in on
dimensional Kerr media with periodic modulation of the r
fractive index transverse to the propagation directi
Polarization instabilities of the linearly polarized solito
have been analyzed in detail and two qualitatively disti

FIG. 13. Diagram showing the regions of polarization and sca
instabilities. Region ‘‘a’’ is the region, where anx-polarized soliton
is stable. Region ‘‘b’’ is the region where it is unstable due to scal
instability. Region ‘‘c’’ is the region where it is unstable to th
waveguide-type polarization instability. In region ‘‘d’’ both scalar
and waveguide polarization instabilities are present. Region ‘‘e’’ is
the domain of radiative polarization instability, ‘‘f ’’ is the region of
coexistence of the scalar and polarization radiative instabilities.
sloping line separating regions of different stabilities is in fact t
lines that begin atd50, q521 and go very close to each othe
The inset shows a narrow region of stability between these
lines.
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instability scenarios have been found. One instability is
the waveguide type. It appears for arbitrarily small birefri
gence and leads to energy transfer from the linearly polari
soliton state to the orthogonally polarized waves that are w
confined inside the soliton-induced waveguide. Another
larization instability is of the radiative type. The solito
emits energy through the excitation of orthogonally polariz
waves that propagate at an angle to the soliton propaga
direction, thereby leading to the substantial energy transfe
nonlocalized nonsolitonic forms. This instability is observ
for relatively large birefringence. Both polarization instabi
ties happen for solitons polarized along the axis with hig
refractive index, providing the nonlinearity is sel
defocusing, i.e., these are slow wave instabilities. If the n
linearity is focusing, the picture reverses, and the instabili
become fast wave instabilities, similar to the polarization
stabilities known for Schro¨dinger-type solitons@4#. Note that
the general perturbation theory of polarization instabilities
the limit of small birefringence, developed above, can a
be applied for Schro¨dinger solitons.
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APPENDIX

We linearize coupled-mode approach Eqs.~4! and~5! near
the x-polarized soliton, Ex

(6)5Ax
(6)exp(iqz), Ey

(6)50,
through the substitutionEx

(6)5(A(6)1ex
(6))exp(iqz), Ey

(6)

5ey
(6)exp(iqz), where ex,y

(6) are small corrections. For th
sake of brevity, we omit subscriptx in Ax

(6) throughout this
appendix.

Linearization leads to two independent systems forex
(6)

andey
(6) . Splitting real and imaginary parts through the su

stitutionsej
(6)5y j

(6)1 in j
(6) , where j 5x,y, we find

2]zy j
(6)5@6]x1Im~qj

(6)!#y j
(6)1@pj2Re~qj

(6)!#n j
(6)

1Im~r j
(6)1sj !y j

(7)1Re~r j
(6)2sj !n j

(7) , ~A1!

2]zn j
(6)5@6]x2Im~qj

(6)!#n j
(6)2@pj1Re~qj

(6)!#y j
(6)

1Im~r j
(6)2sj !n j

(7)2Re~r j
(6)1sj !y j

(7) , ~A2!

where px5q12(a1b)(uA(1)u21uA(2)u2), qx
(6)5(a

1b)A(6) 2, r x
(6)52(a1b)A(6)A(7) * , sx52(a

1b)A(1)A(2), py5q1d1a(uA(1)u21uA(2)u2), qy
(6)

5bA(6) 2, r y
(6)5aA(6)A(7) * , andsy52bA(1)A(2).

Now we can write the equation governing the dynam
of a small correction in the form

]zyW j5L̂jyW j , j 5x,y, ~A3!

whereyW j5(y j
(1) ,n j

(1) ,y j
(2) ,n j

(2))T andL̂j are the linear op-
erators

r

e

o
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L̂j52S ]x1Im~qj
(1)! pj2Re~qj

(1)! Im~r j
(1)1sj ! Re~r j

(1)2sj !

2pj1Re~qj
(1)! ]x2Im~qj

(1)! 2Re~r j
(1)1sj ! Im~r j

(1)2sj !

Im~r j
(2)1sj ! Re~r j

(2)2sj ! 2]x1Im~qj
(2)! pj2Re~qj

(2)!

2Re~r j
(2)1sj ! Im~r j

(2)2sj ! 2pj2Re~qj
(2)! 2]x2Im~qj

(2)!

D . ~A4!

quations~A3! are reduced to eigenvalue problems through the substitutionsyW (6)(x,z)5vW (6)(x)elz1vW (6) * (x)e2lz and
(6)(x,z)5ÃW (6)(x)elz1ÃW (6) * (x)e2lz. The spectral properties of the operatorsL̂x,y define the stability of the soliton an
re discussed in the main sections of the paper.
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