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Polarization dynamics of Bragg solitons
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The families of vectorial Bragg solitons existing in transversely periodic media and their stability properties
are studied in detail. Two qualitatively distinct types of polarization instabilities have been found. One leads to
the significant radiation transfer into nonsolitonic forms, while the other mainly redistributes energy between
two soliton components.
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[. INTRODUCTION nar waveguide with refractive index weakly modulated
across the propagation directigeee Fig. 1, we have de-
It is known that so-called gap or Bragg solitons can existrived the following reduced system of coupled propagation
in nonlinear media with one-dimensiondlD) periodic  equations:
modulation of the refractive index, see, e.g., REfsZ]. The

physics behind them differs significantly from the nonlinear 10,E 1+ g +[ 812+ F(X)]E, |+ [ a| E, |
Schralinger (NLS) solitons. Bright NLS solitons in self- ’ ’ ’ '
focusing media can be interpreted as due to the phenomenon +(a+2P)|E (|*E, |~ 6E, /2=0. 1)

of the nonlinearity-induced total internal reflection of light
from the periphery of the soliton itself. In the case of pel’i— HereEr andEI are enve|ope$|ow|y Varying a|ongz) of the

odic media the reflection of light from the periphery towardsright and left circular polarization components of the electric
the soliton center is due to the Bragg effect, which creates gg|d

forbidden gap between the “conduction” and the “valence”
bands in the periodic structure, which is often referred as 1D

photonic crysta[3]. Bragg solitons exist at frequencies that E=(E,,E)T=
lie in the gap, but where a nonlinear change of refractive A
index shifts its boundaries. This shift can be positive or nega-

tive, since it does not matter whether the gap is shifted abov
or below the soliton frequency, so long as the latter is out 0

the forbidden gap for propagation. . : ;
The present paper deals with the properties of vecto‘reﬁects in_ planar Wavegwd_es, see €.g. Réf-6,11. &
= (e,— €,)/ €, accounts for linear birefringence of the crys-

Bragg solitons in an anisotropic one-dimensional periodic ; .
99 b b tal, wheree, , are space-independent components of the lin-

structure. We consider spatial solitons, i.e., a quasi-one- dielect tibility t taken in th |
dimensional beam propagating in a planar waveguide wit ar dielectric susceptibiiity tensor taken in the normal coor-
dinates. The nonlinear part of the displacement vector

periodic modulation of the refractive index transverse to the
propagation axis. This geometry is interesting in allowing
bright spatial solitons in media with either focusing or defo- 'y,
cusing nonlinearity, so that spatial self-trapping can be ob- Z;
served over a wide frequency range. In contrast to the famil- X
iar case of temporal Bragg solitons in the optical fibers,
Bragg solitons self-trapped in the direction transverse to theg
direction of propagation have not been investigated so far. ,\1
The paper is organized as following. In the following sec- €2
tion, we describe the system and introduce model equations
In Sec.lll, we introduce families of the scalar and vectorial
Bragg solitons. In the Sec. IV, we study their stability and , ;
make comparison with results known for vector N[&-7] s - coordinate

1

V2

part from the functiorf (x) (see beloy, these equations are
similar to the well-known model describing the transverse

[E+Ei(E—ED]". @

X

and scalar Bragg solitori8—10. Z Polarization system
2] >
8 j\ Et or E
= >

II. MODEL EQUATIONS — I
X
Starting from the full set of Maxwell equations describing
propagation of electromagnetic waves in an anisotropic pla- FIG.1. 1
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entering Maxwell equations was taken in the forﬁ] vide SUfﬁCiently Strong §Cattering from the gratlng Equiva-
=an|I§|2I§+BeX(I§I§)I§* [12]. « and B describe self- and lently, one can use two input beams propagating at an angle
cross-phase modulation, respectively, due to the nonlinedp Z &xis, see F.'g' 1. The Iatter. sc.heme IS eq“'V?'em to the
part of the refractive indefl2]. If 8 is not equal toa, the one suggested in Rdfl4] for excitation of parametric Bragg

medium exhibits nonlinear birefringencé(x) describes a solitons. From a mathematical point of view, propagation of

: - : :a spatial soliton is equivalent to the zero velocity solitons in
weak spatially dependent contribution to the linear suscepti ragg fibers[14]. Selective modeling of Eqs4) and (5)

bility, a linear index modulation that creates a forbidden gapB . . . .
for waves propagating in the direction. The space coordi- Indicates that introducing nonzero velocity through the sub-

natesx and z are scaled to the wavelength and diffraction stitution (X’Z.) H.(X_UZ.'Z)’ does not generally_lead to dy-
length, respectively. namics qualitatively different from those described below.

Assuming that the index modulation is weak enough and Ve Seek solitary solutions of Eget) and (5) in the form

that the soliton width is much greater than modulation pe-
riod, we can represent the soliton field as a superposition of
two waves, which have .opposnely dwecpeatomponents of Parametrization by naturally follows from the single phase
their wave vectors. This, in essence, is equivalent to th?nvariance of the Eq(1)

coupled-mode approach applied in the case of fiber Bragg '
solitons[2,13]. It is convenient to switch to a linear polar- (E, ,E))—(E,&'¢ Eei?) @
ization basis at this stage, so we further transform Ey. r' T ’

reducing them to coupled-mode equations through the Sulyhere ¢ is an arbitrary phase. Numerically solving the re-

E()=AL)(x,q)e%. (6)

stitution sulting set of ordinary differential equations fax,), we
have been able to identify four soliton families. First, there
E, :iei(71-2/2L2)Z[E§(+)(X'Z)ei(7r/L)x are two linearly polarized solitong) A{)=0, A{")#0 and
SN Y (i) AL #0, AlY=0. The stationary profiles of the linearly

polarized solitons obviously coincide with those known in
closed analytical form for the scalar probldi®]. The two
Y (+) . families of the linearly polarized solitons are straightfor-
ere, Ey, are slow functions of x  pu dly transformed one into another using{™(q,x)
=|(1L) [ (x)e'®™Y*dx| is a coupling coefficient, andis wargly M 14.x)
07\ _ _ “ =2 =A{(g+8x). Second, there are two families of ellipti-
the modulat|o~n period. Introducing new variables cally polarized solitonstiii) Ag(:)qﬁo’ A§,i)¢0 and(iv) the
=(1/2)pz and x=(L/2m)ux and omitting the tilde in the family obtained from the third by inverting the sign of either
following, we get the set of four equations x- or y-polarized componentsvhich corresponds to the op-
(5 4 e () 4 = (F) ()2 ()12 posite direction of the rotation of the polarization vegtor
i0,EHio By +HE H [(at+ BB+ 2|EL|%) A bifurcation diagram showing dependence of the total
+a(|E§li)|2+|E§I)|2)]E§(i)+aE§/i)E§I)* E(9) soliton powerP (4,P=0),

+E§(&)(X,Z)e7i(wu)x]_ ?)

+BEGIZELI* 1+ 2 E(FIE(IE)* =0, 4 - B
PR TR 2BE TR TR @ P= | dx(E; P+ E;P+IE P+IE; D ®
i0,E ) xig,E()+E(D + S+ [ (at B)(JES)|2
- i i . vs ¢ for all the above mentioned Bragg solitons, and corre-
+2[E{)|?) + a|EL)|2+ BV ]ESY sponding examples of the soliton transverse profiles are
()= (F)* =(F) (+)2=(+) shown in Figs. 2 and 3.
+aE BT R+ BEYTOE, The necessary conditions for existence of the Bragg soli-
+2,8E§f)Eff)E§1)* —=0. (5) tons can be found _from aqalysis of thg dgcay of the soliton
tails. Linearly polarized solitons can exist| | <1 (x polar-

Note that the coupled-mode approach applied for tempoization or [g+8/<1 (y polarization. The power of the
ral solitons in fiber Bragg gratings results in an equivalent seX-polarized soliton is obviously independent, see Fig. 2.
of equations. In the fiber case,should be interpreted as The peak intensity of the linearly polarized solitons goes
local time andx as a coordinate along the fiber. Though down wheng approaches the lower boundary of the forbid-
experimental relevance of the existence of vector gap soliden gap from above, i.eq,(q+6)——1, providing that

tons in fibers has been outlined in recent wfiB], we are  nonlinearity is defocusing, i.eq+3<0. When the nonlin-
not aware of any theoretical studies. earity has the right sign, a relatively small intensity is enough

to push the effective frequency down into the “valence”
band. In contrast, if},(q+ 8)—1, i.e., wheng approaches
the upper boundary of the forbidden gap, the peak intensity
We focus below on the properties of spatial Bragg solitonf the soliton should be very high to produce a nonlinear
propagating parallel to the axis. Practical excitation of shift of the wave number large enough to bring it into the
these structures should require use of a strongly diffractingvalence” band. A focusing nonlinearity pushes the effective
initial beam profile with suitable wavelength, which can pro-wave number up towards the “conduction” band, so revers-

Ill. FAMILIES OF BRAGG SOLITONS
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POLARIZATION DYNAMICS OF BRAGG SOLITONS

1.6f
1.4¢ Elliptically polarized soliton .
K4
1.2p
1 L
)
L %2
008 Y
0.6f
x — polarized soliton
0.4}
0.2r y — polarized soliton
0 -1 -0.5 0 0.5 1
b

PHYSICAL REVIEW E66, 046603 (2002

FIG. 2. Dependences of the soliton power on the anisotropy FIG. 4. Polarization state at distandefrom the center of the
parameters for linearly and elliptically polarized solitons. Dashed elliptically polarized soliton for different parameter® q=0, &

lines show regions of polarization instability. Parameters gqre
=0, a=-2, B=—1.

—-0.7, (b) q=0.9, 5= —1.46.

soliton tail is elongated along theaxis, and alongy axis if

ing the picture just described. Elliptically polarized solitonsyice versa. In the vicinity of the point where the elliptical

exist if max(q|,|]q+ 8)<1, i.e., inside the range of wave num-

soliton splits from thex-polarized one, i.e., ai= &, see Fig.

bers, for which the propagation of linear waves is forbiddenp the former has a core with neasypolarization and tails
for both polarizations. An elliptical soliton family detaches yith nearlyy polarization, i.e., the polarization state rotates

from the linear one at some critical value 6t §; and it

by approximately 90°, as position varies from the soliton

ceases to exist at+ 6—1, when the band gap boundary for core to its periphery, see Fig. 4.

y polarization is achieved, see Fig. 2.

Note that Egs(4) and(5) remain unchanged after substi-

Because of the birefringence, the decay rate of the solitoftion

tails is different forx andy polarizations. For example, |if|
is closer to 1 thang+ 8|, the polarization ellipse at the

0.8
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FIG. 3. Intensity distributions for thg-polarized soliton(a), I¥
=|A;[*+|A; |, and for the elliptical soliton(b), I¢=|AS]
+|AL [P+ |AJ [2+]A, |, for different values ofs. Parameters as in
Fig. 1.

(8,a,B8,ED)

X,y ’Ei,_y))—%_ 0,— a,—ﬁ,Eg&)* T Ei&)*)-

Therefore, without the loss of generality we can fix the sign
of @ and B8 to negative. Then changing sign éfwe will
effectively study both focusinga,8>0) and defocusing
(a,8<0) nonlinearities. In all subsequent calculations, we
fix a=—-2, B=—1, which corresponds to the defocusing
electronic nonlinearity.

IV. STABILITY ANALYSIS

After establishing the existence of the soliton families in
the problem, we now turn our attention to their stability
analysis.

A. Analytics

Though full stability analysis is possible only by the
means of numerical methods, some results on stability of the
x-polarized solitons can be derived analytically. For this pur-
pose it is easier to use governing equations in the fdm
We proceed by linearizing Eql) through the substitution

Er i =[A100+ U (x,2)+iW, (x,2)]e%,  (9)
where A, |(x) are real functions characterizing transverse
profiles of the soliton components in circular basis &hd,

W, | are small real perturbations. After separation of real and
imaginary parts, in the first perturbation order, we derive a
system of linear equations:
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(T-67)0=—a,W (10) in the soliton spectrum, generating instability in the latter
2 case. To work out conditions for this instability, we transform

(P— 67)\W=0,0 Eq. (10) to the form
=4,0,

whereU=(U,,U))", W=(W, ,W)T, TPW=(— N2+ 6T+ 6T+ 27)W. (16)
.11 -1
21 1) 1D we assume thali\ |>~| 5] and search for solutions of Eq.

(16) in the form
PareT self-adjoint operators:

wW=w,+w,+0(|8]?), 17
D— aA?—(a+2B)A? 0
_( 0 D— aA?— (a+2B8)A2]’ where the components of, are of orderf 5|. Then solvabil-
(12) ity conditions in the first order require orthogonality of the
vector R=\2w,,+ 677w, to the null space of the operator
R adjoint to ATf? ie., PT. The null space of the latter is
- D—3aA?—(a+2B)A —2(at2B)AA spanned by the two vectorsi,=dq(A,A)T and u,

—2(a+2B)AA, D—3aAl—(a+2B)A? =[x(Ar0.Ai0)1h_,. The verification ofP7U, =0 requires
(13 the linearization procedure to be done ¢ 0 in the vicin-
ity of the two-parameter soliton familyl5). This reveals

andD = — a7+ x—f(x). Assuming exponential evolution of explicit dependence dP and7 on A, which can, in its turn,
the perturbations, i.e., U(x,2)=u(x)e*+u*(x)e*"%,  be used to check that(7u,)= —Pw,=0.
W(X,Z)=W(X)9“+W*.(X)ex*z., Eqg. (10) are straightfor- The orthogonality oR to U, is satisfied unconditionally,
wardly reduced to a linear eigenvalue problem. while  orthogonality to u, requires )\2<le¢| Uy

In the special cas&=0, Eq. (1) acquire an additional Ao s = - Ao . .
symmetry group + 8(Trw ylua) = N3 (wylup) — 87w ,lw,) =0, which gives

. . + o0
(E, .E)—(E e’ Ee "), (14 —45[ dx A2
A2= — : (18)
N f dx(Afo—Alzo)}
A=0

— oo

wherey is a second arbitrary phase. Linearly and elliptically
polarized solitons become, in this case, members of a single
soliton family. This is because the second phase invariance
implies existence of a second family parameteand soli-
tons can be sought in the form

Despite the fact that integrals in E(¢L8) can be calcu-
lated only numerically, this expression gives a clear indica-
tion that a change in sign of results in instability of the
soliton. As it can be seen from the structure of the excited
eigenmode, the perturbations growing as a result of the in-

This new parametrization opens up a possibility to deveIop;adb':'ityh?a\éfgrigg?r;aﬂOgﬂ%ﬁ:ﬁi teheuglogge;p;nrﬂmgéefght
an a§ymptot|g theory of polarization instability of linearly haveg (?site sians To?/erify our analq tical resul%s and,fur-
polarized solitons for small values of. The case of ther d ppl 9 d tandi £ ol y tion inst ’b.l.t. ¢
x-polarized solutiomA, = A, = A provides a particularly trans- er develop our ungerstanding ot po‘arization Instabiities o

parent example, because in this case the fundicioes not Bragg solitons, we describe below an extensive numerical
itself depend ori‘)‘ see Eq(1) study of the polarization dynamics of gap solitons.

For =0 the infinitesimal symmetry transformatio(is})
applied to thex-polarized soliton generates a Goldstone or
neutral soliton eigenmode=w,=(A,—A)", u=0 having
zero eigenvalue, i.e=0. The zero eigenvalues corre-

sponding to the Goldstone modes in Hamiltonian systems a N~ o
always evenly degenerate, see, e.g., RES]. In our case on we make full use of Eqs4) and (5). Their linearization

i il () (+) = in-
double degeneracy is realized and therefore, when the synf€ar the sollt'on solutioA,~’#0, Ay’=0 leads to two in
metry (14) is broken by nonzero values of, either two ~ dependent eigenvalue problems for the operatiys, see
imaginary or two real eigenvalues with opposite signs appeathe Appendix. Eigenstates @, determine the evolution of

Er — Aro(x)eiqz+iAZ+i ¢+it//, EI — AIO(X)eiquiAZ+i¢fi z//'
(15

B. Numerical results

All our numerical results are obtained within the approxi-
I,@ation of slowly varying amplitudes and therefore from now
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FIG. 5. Spectra oﬁy for different values ofs: (a) 6=—0.25,
(b) §=—-0.8, (c) 6=—0.85. Other parameters as in Fig. 1. FIG. 7. x-z plots showing evolution ofE!{"|?+|E{|? (a) and
[ESP|2+ES)? (b), when Egs(4) and (5) are initialized with an

x-polarized perturbations, which, in the circular basis, haveX'E(ﬂaO”z‘f__)d soliton perturbed by noise. The parameters aré and

identical left and right components. The spectral properties

of £, have been studied in detail in several previous Papergig. 5 correspond to the continuum, which is divided in two
[8], and it has been found that under the certain conditions Barts by the central gap|q+d|—1<Ima<1—|q+d|

quadruplet of complex eigenvalues close to the continuunyhere the stable eigenmodes belonging to the discrete part of
part of the spectrum generatessealar instability of gap  ho spectrum can be found, see Fig)5

solitons. ) i ) . The direct numerical simulation of Eg&l) and(5), with
The dynamics of-polarized perturbations is governed by jniia| conditions taken as ax-polarized soliton plus seeded

the eigenstates of the operatdy, which is & dependent. noise of both polarizations, shows an initial growth rate of
The spectrum ofy has a doubly degenerate zero eigenvalughe y- component within 5% of the value found from the
at =0, which in the circular basis corresponds to the neuspectral problem. After the transient regime the instability
tral eigenmodaw,,. Numerically tracing a deviation of these 9enerally leads to the formation of an oscillatory solitonic
eigenvalues from zero, we have found that instability, i.e., State, sée Fig. 7, which is close to the elliptical soliton. Note
pair of real eigenvalues, appears ¢ 0, see Fig. 5 and Eq. that stab|llty a}naIyS|s of the latter lies outs!dg our present
(18). Excellent agreement between the numerical and th€COPe. Radiation losses have been found minimal during de-
analytical results for small absolute valuesdéan be seen Velopment of the instability, which agrees well with good

in Fig. 6. The high-density regions of the spectrum seen ifocalization of the unstable eigenvector within the region of
localization of the soliton itself, see Fig. 8. Thus the polar-

+)
A
04 0.4 Re x
03
< 03 =0 A(+)
2 0.2 X

0.1
0
-0.1

q5-0.25

-02 =015 -0.1 6-0,05 0 0.05

035 5,'? 55
FIG. 6. Comparison of numerical resultsrcles for the polar-
ization instability growth rate with the analytical predictiofgg. FIG. 8. Components of the eigenvector generating polarization
(18)], (solid lineg. Parameters as in Fig. 1. instability. The corresponding spectrum is shown in Fi@g).5
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Re A

FIG. 9. Growth rate of the waveguide-type instability &sThe -0.5¢
corresponding spectrum is shown in Figa)s

ization instability found for small negativé can be inter-
preted as parametric excitation of guidggolarized waves —0.5;
in the waveguide formed by the-polarized soliton, i.e.,
waveguidenstability. y) 20 20 60 30 100
With further increase of | the instability growth rate X
approaches its maximum, then it starts to decrease in value ) . o
and finally the positive and negative eigenvalues fuse at zero F!G: 11. Components of the eigenvector generating radiative
for 6=, see Fig. 9. This appears to be exactly the pointnstability. Parameters aré=—1.2, q=0.
where the elliptic soliton family detaches from the
x-polarized one. For largd®| the eigenvalues, we are trac-
ing, quickly move along the imaginary axis, see Figh)b
towards the edge of the continuum spectrum. For sdme
=§,, as a result of collision with eigenvalues close to the

edge of the continuum spectrum, four complex eigenvaluegg o waveguide-type instability for small negatide The

appear |n_t.he soliton spectrum, see F'g:)S.TWO of these. characteristic angle of radiation increases, from being small
have positive real parts thereby generating Hamiltonian-

Hopf instability of thex-polarized soliton. With further in- a)
crease of §| the instability growth rate decreases slowly. It
seems that its existence region is not bounded from the left
see Fig. 10. 80
The eigenvectors corresponding to the latter instability are
weakly localized relatively to the soliton itself and have os- 60
cillatory tails, see Fig. 11. The direct numerical simulation *
reveals that energy flow from theto they component is
followed by substantial radiation of energy out of the effec- 20
tive waveguide created by the soliton, see Fig. 12. This could
be expected from the form of the eigenvectors. Thus this

Im u®@

type of the polarization instability can be naturally referred
to as theradiative instability. The amount of energy emitted
into nonsolitonic forms decreases with propagation, finally
leading to the formation of a solitonlike structure with ellip-
tical polarization state, similarly to what happens as a result

40

b)

10 20 30 40 50
z

-2.5 -2 -1.5 -1
5 FIG. 12.x-z plots showing evolution dfE!{ |2+ |E{|? (a) and
[ESY|2+|ES7)? (b), when Egs(4) and (5) are initialized with an
FIG. 10. Growth rate of the radiative-type instability §sThe  x-polarized soliton perturbed by noise. Parameterscgd®, 5=
corresponding spectrum is shown in Figc)s —0.85.
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instability scenarios have been found. One instability is of
the waveguide type. It appears for arbitrarily small birefrin-
gence and leads to energy transfer from the linearly polarized
soliton state to the orthogonally polarized waves that are well
confined inside the soliton-induced waveguide. Another po-
1 larization instability is of the radiative type. The soliton
q emits energy through the excitation of orthogonally polarized
waves that propagate at an angle to the soliton propagation
direction, thereby leading to the substantial energy transfer to
nonlocalized nonsolitonic forms. This instability is observed
for relatively large birefringence. Both polarization instabili-
ties happen for solitons polarized along the axis with higher
FIG. 13. Diagram showing the regions of polarization and scala{jefractlvg ”."dex' providing  the npnlmea_n_ty is self-
. . h - - . efocusing, i.e., these are slow wave instabilities. If the non-
instabilities. Region & is the region, where an-polarized soliton linearity is focusing, the picture reverses, and the instabilities
is stable. Region B” is the region where it is unstable due to scalar ! e S ’ T
instability. Region ‘t” is the region where it is unstable to the becqr_n_e fast wave InStapll.ltleS’ similar t(.) the polarization in-
waveguide-type polarization instability. In regiod™ both scalar stabilities known for Schmi]nger—type SO','ton_@]'_ Note .t_h.at .
and waveguide polarization instabilities are present. Regasris: the general perturbgmor_l theory of polarization instabilities in
the domain of radiative polarization instabilityf*is the region of ~ the limit of small birefringence, developed above, can also
coexistence of the scalar and polarization radiative instabilities. Th&®€ applied for Schidinger solitons.
sloping line separating regions of different stabilities is in fact two

lines that begin ab=0, g=—1 and go very close to each other. ACKNOWLEDGMENTS
The inset shows a narrow region of stability between these two
lines. Support from the UK EPSRC through Grant Nos. GR/

N19830 and GR/R 74918 is acknowledged.

for & close to§, to being close tor/2, whend— —o. A

qualitative explanation for this dependence can be based on APPENDIX
the assumption that one of the conditions for the radiative We i ;
) - . . | e linearize coupled-mode approach and(5) near
instability should be in synchronism between the soliton anqh P PP B ©)

: i i (£) = (%) (=) _
some plane wave with wave vector lying outside the forbid—thfoux rﬁ) Otlr?gzsel?bst?tzltlitgpfy(gx— ( Aéﬁ; +i>((g)@)qu))(, ( EZ3)’ E(g)’
den band. Taking a&-polarized plane wave in the form 9 x - x pl9z), Ey

en t _ _ _ _wav —al®) (+) i
el9219% we find a dispersion relation in the forms( ey 'exp(qz), where ey’ are small corrections. For the

X,y
—q,)%—¢?=1. Synchronism requires,=q, whereq is the  Sake of brevity, we omit subscriptin Al®) throughout this
Z X . )
shift of the soliton wave number. This gives an estimate forP

pendix.
the characteristic angle of radiation: ¢, ¢~ Linearization leads to two independent systemsegr

tarctan(’—Z_(é— a)2—1/q). Though this expression qualita- ande§i). SEJIitting+reaI agd imaginary parts through the sub-
tively reproduces the numerically observed dependencg of stitutionse{ ™) ={*)+i ("), wherej=x,y, we find

on &, one should bear in mind that the dispersive properties
of waves emitted by a soliton are of course different from
those of plane waves, which limits this and other possible
applications of the synchronism condition. FIm(r+s) vl D+ Rer(F—s) T (A1)

The polarization instabilities found here can usually com- : 1 : S
pete with the scalar instabilities reported in Ré&f. An im-

— 90 =[ gy Im(af ) o))+ [p; —Relqf ) ]v{)

portant observation in this context is that the scalar instabil- _ 5 ,,(£)=r+ 5 —1m(q{*)]2*)—[p; + Re(q{*) ] *)
ity exists only forq>0 [8], i.e., in the top half of the 2 =L G Imlg ]_’ Py % _] '
forbidden band, while polarization instability can be present +Im(r{® =) »{) —Re(r{(V+s)uf?, (A2)

for any g and is controlled by the sign of. The unstable
regions in the ¢,8) plane are shown in Fig. 13. If both where p,=q+2(a+B)(|AN2+|AT)]?), P =(a

instabilities are present, either can dominate depending on g)A(*) 2, rg(i)zz(ajulg)A(i)A(i)*, s,=2(a
the values of the parameters. +B)ADAC)  p =g+ 5+ a(|AD|2+|AC))?), q§i)
:BA(i) 2 r§i): aAIAGF) * andSyIZ,BA(Jr)A(*).
V. SUMMARY Now we can write the equation governing the dynamics

We have studied existence of linearly and elliptically po-©f @ small correction in the form

larized spatial Bragg solitons propagating in one- e a

dimensional Kerr media with periodic modulation of the re- I vi=Livp, J=XY, (A3)
fractive index transverse to the propagation direction. R .

Polarization instabilities of the linearly polarized solitons Wherev,:(vj(” ,V](+),vj(_) ,v](_))T andZ; are the linear op-
have been analyzed in detail and two qualitatively distincterators
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aHF+im@™)  p—Reqgl™) Im(r{V+s)  Rer{V-s)
—p+Rea{™) o,—Im(a{?) —Rer{P+s) Im(r{V-s)

L= _ _ _ ~ (A4)
) Im(r{7+s)  Rer{’-s) —g+Im@a{?) p—Reql)
—Re(r{7+s) Im(r{-s) —p;~Reg{”)) —a—Im(q{)
Equations(A3) are reduced to eigenvalue problems through the substitution$x,z) = o) (x)e*+ o) * (x)e~* and

v)(x,2) == (x) "+ () * (x)e 2. The spectral properties of the operatdss, define the stability of the soliton and
are discussed in the main sections of the paper.
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